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SUMMARY

The theory of satellite orbits about an oblate planet

is studied by means of a _ew set el canonical vari-
ables. The IIamiltonian function is separated into

two parts, one of which is neglected. The neglected
part is periodic with mean value equal to zero,
and it vanishes when the inclination is zero. Thus

the solution obtair_ed by neglecting this part of tt_e

Ilamiltonian is exact for equatorial orbits; .for

inclined orbits the secular motion of the node and

perigee are obtai_ed correctly to the second order
in the oblateness parameter.

For satellite orbits the geometric equation of the
trajectory is obtained in the classical form in terms

of true and eccentric anomalies, with these being
related to the physical angle (argument of latitude)

by tran,fformations involving elliptic functions.

The kinematic equation obtained is a natural gen-

eralization of Kepler's equation. All the orbital

elements are constants in this approximation; the

perturbation equations for the elements are exhibited
but not soh'ed.

A numerical example is included based on the

satellite 1958 f12 (Vanguard 1). Secular motions

are predicted accurately, and periodic motions _t_thin

the limitations of the theory.

Relaticistic effects are shown to be negligible as

far as the geometry of the orbit is concerned, u'hile

the secular drift of a satellite-borne clock is shown

to be on the fringe of detectability.

INTRODUCTION

The theory of satellite orbits at)out an oblate

planet has been discussed by many authors in

recent years, using a variety of methods. ]3rouwer

(ref. 1) has obtained a solution by stqrting with
the elliptical orbit and then computing the effects

of oblateness by yon Zeipcl's modification of

Delaunay's method. Garfinkel (ref. 2) uses the
same method but starts with an intermediate

orbit, obtained by means of an approximate

potential func{ion (for t lm phmet's gravitational

field) that leads to separability of t lie Hamilton-

Jacobi equation in spherical polar coordinates.

Vinti (ref. 3) obtains an implicit solution in closed

form by solving the Hamilton-Jaeobi equation in

ellipsoidal coordinates. Kozai (ref. 4) begins

witl, the elliptical orbit and then applies

Lag'range's method of variation of parameters.

The purpose of the present paper is to obtain

a new intermediate orbit having three important

properties. First, it is the complete solution in

the equatorial case. Second, in the case of inclined

orbits, the secular motion of the node and perigee
are treated correctly to the second order in the

oblateness parameter. Third, the elements of

the orbit are displayed explicitly in the form of

rapidly converging series involving the oblateness

parameter, which can easily be carried to any

desired order of accuracy and are well adapled

to numerical computation. Thus, the solution
presented here is more tractable than Vinti's
and is more accurate than the others in the

equatorial case.

Finally, the perturbation equations relating

the intermediate orbit to the complete problem

are obtained but. not solved, simply to put the

present solution in its proper perspective.

SYMBOLS

a semimajor axis of orbit, dimensionless

A coefficient in orbit equation, @pen-
dix D

A,, coefficient in Fourier series ex-pansion

of elliptic integral

B angular momentum in relativistic equa-
tions
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coefficients in Fourier series for dO
dv

speed of light p.

coefficient used lo make 0=0 at perigee p
eocfficients in Fourier series for cos v q_, Q_
dissipative force q

dimensionless dissipative force, DR----_ --Qp=%

total energy in relativistic equations _a=gv
eccentric anomaly
comph, te elliptical integral of second [l

kind r
generalized foeee
frequency parameter in elliptic fune- S

tions So
generating function in IIamilton-Jacobi S_

theory T
distance-dependent portion of gener- t

ating funclion u
force

generalized force u_, u_, u3
charact:eristic cubic U

mfiversaI constant of gravitation v
characteristic cubic v_
Hamihonian function V
secular portion of Itamillonian function w
periodic portion of IIamiltonian func-

tion wb w2, Wa
angle of inclination of orbital plane to IV

earth's equalorial plane X_, _I_
dimensionless coefficients in earth's

gravitalional potential cq, ¢tj,
3J2 39, 6¢ f
--7, Jcffreys' coefficient 3

modulus of elliptic functions
complementary modulus q'
complete elliptic integral of first kind
complete elliptic inte_al with comple-

mentary modulus a
Lagwangian function e
mass of satellite eo

mass of planet f
mean anomaly
coefficients in series expansion of mean n

anomaly (Kepler's equation) _, _
mean motion

order of magnitude nr
generalized momenta
radial velocity, dimensionless 0
angular momentum, dimensionless

pn=-Pn

AND SPACE ADMINISTRATION

axial componen t of angular momcn turn,
dimensionless

lot al energy
semilatus rectmn, dimensionh, ss
generalized coordinates
Jacobi's home

time of perigee passage
argmnent of perigee
right ascension of ascending node at,

time of perigee passage
planet's equatorial radius
geocentric distance

q,
dimensionless </islurbance hmetion-

secular portion of S
periodic portion of S
kinetic ener_-, dimensionless
lime, proper time
reciprocal geocenlric dist'mee, dimen-

sionless

roots of characterislie equation
negative Newtonian potenlial
lrue anomaly
coefficients in Fourier _eries for v

velocity
auxiliary variable used in Cardan's

solution of the cubic

roots of characteristic equation

velocity, dinwnsionless, V_/R/_
generalized forces
geocentric right ascension

definite integrals used in derivation of
Kepler's equation, appendix E

azimu(h of velocily vector, clockwise
from north

flight-path angle, upward h'om hori-
zontal

geoeen tric declinat ion
discriminaut of clmracleristic equation
eccentricity of orbit
parameter related lo eccentricity
auxiliary angle used in Cardan's solu-

tion of the cubic

tohfi energy, dimensionless

limiting values of _ for positive dis-
crimin an t

value of n for which orbit is tangent to
surface of planet

auxiliary angle used as independent
variable; equals right ascension for
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equalorial orbits, dcclinalion for
polar orbits

'.lvanee of perigee per revolution
coefficients in Fourier series for v

auxiliary angle and coefficients in
Fourier series for v

¢/_, independent variable in series ex-
pansions

G(M+ m), dynamical constant of gravi-
tation

u/Rc e, relativistic oblat eness parameter,
dimensionless

r/R, dimensionless geocentric distance
1

PJ, dimensionless

oblateness-inclination parameters, di-
m ensionless

oblateness-inclination-relativistic par-
ameter, dimensionless

dimensionless time, G'_/R 3

time of perigee passage
disturbance potential
argument of latitude
ar_mlent of perigee
secular an(1 harmonic coefficients in

Fourier series for

auxiliary angle in elliptic rune!ions
earth's spin velocity
right ascension of ascending node
advance of ascending node per revolu-

tion

right ascension of ascending node at
time of perigee passage

secular and harnIonie coefficients in
Fourier series for a

binomial coefficient

Lagrangian bracket
degrees of arc
seconds of arc
absolute value

d/dr
SUBSCRIPTS

conditions at apogee

conditions at perigee
initial conditions
referred to inertial h'ame
referred to earth

components of vector in direction of in-

crease of variable denoted bysubserip t

ORBITAL COORDINATES AND THE EQUATIONS

OF :MOTION

The orbital coordinates to be used here were

introduced (in a different notalion) by the present
author in reference 5, and are shown in figure 1.

Z

Y

x

FIGURE 1.--Coordinate systems.

The equations of motion (ref. 5, eqs. (33), (34))
are

d2r V_=F_
dt 2 r m

d(_G) rG
dt m

d_ F_ sin
dt mV_ sin [

d.q
te_t/=sin ctn _ _-I

G=, da it)\_tN COS

where G, F¢, and Fz are the force components in
the direction of increasing r, _,, and [, respectively.
It is convenient to separate them as follows:

F, g+b_, D,
G=-7 _tG

F_ 1 bqs+D_

F_ 1 b+ Dr
m-=r sin ,p _4 m
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where ¢, is the disturbance potential (due, for

example, to oblateness) and Dr, D,,, Dr are forces
not derivable fi'om a potential (for example, air

drag).
It is convenient

variables as follows:

g

_.= t.(;I n 3

S= _R
I.t

_o introduce dimensionless

Dp = D_ R 2"
m,u,

D --D_R2

Dz=-D'R2

0)

and the dot denoles differentiation with respect to

r. Then the equations of motion can be trans-

formed into the four-dimensional La_angian form

[d /bLX bL

d /OL'X bL _ I3; t _-)-a -=°_ sin_,

3d /bL\ bL ,_,
|7=I--_=p,IJ,p COS [--Disin I eos_)

(3)

where R is the equatorial radius of the planet, t
is time measured in seconds, V_ is the horizontal

component of velocity, and i_=G(.'tl-a,-m), where
(7 is the universal constant of gravitation, 3/ is

the mass of the phmet, and m is the mass of the
satellite.

Adopting the conventional values for the earth,

R=6378.38S km #=398632.9 km3/see 2

aml assuming thai m/3[ is n(,gligible, gives
13.44710 nfinutes as the unit of r and 7.905532

km/sec as the unit of W.

The equations of motion can now be written in
the dimensionless form

d'2p IV_ -_ 1 bS
ct_-_ p _+F_a +z j°

d(olI') bS
4-pD_

dr be

dr li_ sin I ; _/+/JI sin e

d[ de.
_r=sin I etn

(d_ + da
l'l_=p \itr dr cos 0

(2)

EQUATIONS OF MOTIONIN I.AGRANGIANFORM

Define the LagTangian, L, by

where the kinetic energy, T, is given by

1 2 1
T={ b +_ W_

The derivation of the first three is straight-

forward; tim fourth requires the relation

bS 5S bS
cos I--_7 sin I ctn ,p (4)

b.q--5_, (91

which is valid for any function of position

S(p, _, a, I)=S(p, ,_, _)

This relation is proved in appendix A.

EQVATIONS OF MOTIOYIN CASOmCAn FORM

Since the La_angian, L, does not contain i", it

follows lhat ivis an i_orable coordinate. Follow-

ing the usual procedure, consider the remaining

coordinaies, o, '_, _, and the conjugate momenta,

defined by

bL

bL x_ _,. ,
p,=_--_=p,v,=p _- _ cos I) (5)

b L _r
pa=_-6 =p_ _ cos [_p_ cos [

so that iv is given by

/=arc cos (p_/p_) (6)

Next. inlroduee the lIami]tonian (the total

energy):

1 1C5H=2T--L=,_po +_ _ 1

with I to be replaced t)y equation (6), so that H

is expressed expl eitly as a function of the co-
ordinates p, _, -q and momenta Po, P_,, pa.
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It is again a straightforward process to trans-

form the equations into the canonical form

dp bH 1

(l_ bH pp_Dx sin

dr bp_ p2 sin I

(t.(2. OH } pDr sin___
dr bpa p_ sin I

(11)Odr bHbp_D, i

dp_ bH -
dT =--S-_ + pu_

dpa bII
dr bit Jcp(D_ cos [--Dz sin [ cos _)

(s)

Thus, in the absence of dissipative forces, these

cqualions arc in canonical, IIamiltonian form.

This means that tl_t_ enormous body of literature

on tile subjects of contact, transformations, varia-
tion of parameters, and the JIamilton-Jacobi

theory is available for their solution.

It shouhl be remarked that equations (8) are a

completely general fornmlation, valid for any

probh,m in celestial mechanics, since the only
restrictions are that the dominant force be an

inverse-square central force (this is the term

--l/p 2 in the first of eqs. (2)) and that the disturb-

ance function, S be a function of position only
(see appendix A).

In the case of an oblate planet, the disturbance

function, S, is usually written in the form (ref. 1,
p. 396).

S=--_ JkP_(sin _)/p_+l (9)
k=2

where P, is the Legendre polynomial of degree k,
and (see appendix A)

sin (_=sin/" sin ,p

Following Brouwer, the case in which S is trun-

cat.ed at k=2 will be calh,d the "main" problem.

In principle, a(htttional terms can be handled by
perturbation methods.

It. nan 5- be remarked that the definition of lhc

La_'angian is not unique. Because of the relation

between i and h (the fourth or eqs. (2)), the

horizontal velocity, 11_, could be cxoressed in

5

terms of /" instead of l}. Then _2 would be the

i_aorable coordinate. The present procedure is

preferred for two reasons. First, the ignorable

coordinate, I, is given directly by equation (6)

without an additional inte_ation. In the alter-

native procedure the ig'norable coordinate, f_,

couht be obtained only t)3" integrating the equa-
tion for its derivative. Secondly, the purpose

here is to study motion about an oblate planet,

with a disturbance function of the form given by

equation (9). Now this form assumes axial

symmetry. Thus, the distm'bance force lies

entirely in the meridian plane, and has no cast-

west component. IIence one integral of the

equations is known immediately/namely, the com-

ponent of angular momentum along the planet's

a_s is constant. In the present notation, this
means that the conjugate momentum pa is con-

stant. This enters the analysis in a natural way
and reduces the order of the system of equations

immediately.

THE MAIN PROBLEM OF ARTIFICIAL SATELLITE

THEORY

For the main problem the disturbance function,

S, reduces to

J 1 2
S=_ (_--sin / sin's) (10)

where

3
J=_ &

For the earth, J=0.0016232 (ref. 6), when R

is taken to be the equatorial radius. Now S can

be separated into t,wo paris, only one of which is

dependent on ¢:
S=&+&

wllere

3 2

=b--_Jo3sitd/ cos 2,;,&

Recqlling equation (6) for f, this leads to a splitting

of the Itamiltonian into two parts:

H=IIo+IL l[io =1 2 1/P_ \_ 1 J (1 pe2"_

'_ J ( pa= 1"_ ]H_=--2_ sinai cos "P=6_p3 \p j-- ] cos 2_
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Thus, rio is independent of 9, while H, is periodic
in 9 with mean value equal to zero and vanishes

for equatorial orbits.

It may be remarked that the IIamiltonian can

alwass be split in this way for any disturbance
function of the form of equation (9). The odd

harmonics contribute nothing to/'I0, since tile odd

powers of sin _, all have mean values equal to

zero. The even harmonics contain only even

powers of sin _ and hence contribute both to [1"o
and II1. For example, tile contribution of the

fourth harmonic Io II. is

j/f05 4 15 : . 3\/ 5
,tj - sin

while its contribution to [/'l is

j4E(I_ . ,,. 35 sinff) 35"4- 4g,T/pSsin 1--16 cos 2_,-t-_ sm 1cos

For the main problem considered here these higher

harmonics will be neglected.
The "intermediate" orbit mentioned in the

introduction is defined as the solution of the

problem when [L and the dissipative forces are

neglected. This will be referred to as the "inter-

mediate problem," and its solution is the primary

objective of this report.

THE INTERMEDIATE PROBLEM

Substituting trio in equations (8) and dropping

/'[t and D gives the intermediate problem

with

dppp

d_ Jpa

dr Oap_ 2

dPp-- p_2 1 J( 3sin2I)d'-T-- p3 p_ l-_ .

cos I=pa/p_

(12)

(13)

The last two of equations (12) show immediat ely

that p_, p._, and, hence, [ are constants for the

intermediate problem. In terms of physical

quantities,

p. =plI;_ l

;? p Ii;::, :]o_g' j , (14)

and V_, is the horizontal component of velocity.
Thus, p_ is the angular mometltum, and p_2 is the

component of angular momentum along the polar

axis of the I)lanet (both in dimensionless form).

One method of attacking the intermediate

problenl (eqs. (12)) is to seek a solution of the

IIamilton-Jacobi equation (ref. 7, eh. 8)

where

bF
0--_=+ Ho = 0 (15)

F=F(r, p, e, f_, P., P_, Pa)

is a function containing three arbitrary constants,

Pp, P_, Pa, and in t]:0 the momenta arc to be

replaced by:

p_= bF/b_ (16)

pa = bF/b s_

If such a function, F, can be found, then the

complete solution of the intermediate problem is

obtained by setting

aF/bP. = Q, l

bF/bP,= Q,

bF/bP,= Q:_J

(17)

where, Qo, Q., Q. are three additional arbitrary

constants, giving six in all. In principle, the six

equations, (16) and (17), can be solved for the

six variables p, _,, f_, pp, p,,, pa in terms of r and

the six arbitrary constants. In practice, as will
be seen below, the coordinates _, and f_ will be

obtained directly from equations (12).
One method of solving the ttamilton-Jacobi

equation (15) is by separating the variables, that

is, by seeking a solution of the form

(18)F=F(p) + P._+ P::_- Por
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where Pp, P,, Pa are arbitrary constants. This
reduces equations (16) to:

p, dF1

P_=P_

pa=Pa J

(19)

The Hamiltonian, IIo, equation (11), now becomes

where

11o=1/dF\ _ 1/p_\2 1 z

(20)
and the Hamilton-Jacobi equation (15) reduces to
the ordinary differential equation

1 ldF\ 2 , 1 1 __
(21)

algebraic or numerical. Furthermore, in this

representation all the coordinates, including time,

are expressed as functions of p, whereas a solution

with either r or e as the independent variable

wouht 1)e easier to interpret geometrically. While

this ideal goal appears unattainable, it can be

approached by introducing certain auxiliary vari-
ables, as will be seen in the next section. It then

becomes possible to classify intermediate orbits

according to a simple geometrical scheme, with

energy and an_flar momentum as parameters.
Closed form solutions will be obtained in terms

of trigonometric, hyperbolic, or elliptic functions.

The latter will be expanded into rapidly converging
series, and natural generalizations of many classi-

cal equations and concepts will be exhibited.

While the main emphasis is on satellite orbits,

all possible[types of orbits will be exhibited and
identified.

THE ENERGY EQUATION

In principle equation (21) can be integrated

(as an elliptic integral of the third kind) to give

F(p). As is shown in appendix B, the six arbi-

trary constants then have the following physical
significance:

Pp total energy

P_ total angular momentum

Pa polar component of angular momentum
--Qo time of perigee passage

Q_ argument of perigee

Qa right ascension of the ascending node

when the satellite is at perigee

Equations (12) could then be integrated to give
r, e, and _t as elliptic inte_als of the third kind in

terms of p and the six constants, with the momenta

being given directly by equations (19).

The transformation from the variables (p, e,

rt, p,, p,, p_) to the set (Q,, Q_, Qa, P,, P,,, P_) is,
of course, a cent.act transformation. When I[_

and the dissipative forces are inchided, then the

P's and Q's are no longer constants but satisfy a

new sot of canonical equalions. This set. of equa-

tions is exhibited in appendix C, to show explicilly
the relation of the intermediate orbit to the com-

plete problem; no attempt will be made to solve

these equations in the present report.

To return to the intermediate prol)lem, the

method of solulion outlined above is unsatisfactory
for two reasons. Elliptic integrals of the third

kind are notoriously intractable to analysis, either
593524--6_ --2

If pp is eliminated from equations

resulting system is

d2p P J 1 a "_

I
p o

de . _+ JP__2
|

df_ -- JPa |

-_r= p _p3 J

with _ given by equation (20) and

(12), the

(22)

pit :Pfl

P, and Pa being constants. Substituting the

first, of equations (19) into equation (21) gives

1 dp 2 1 l(p)+:_gp3 (23)

which is simply the first inte_al (the ener_- in-

t.e_M) of the first of equations (22).

In the case of the classical two-body problem,

with J----a----0, the usual procedure is to take ¢ as
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the independent variable and to introduce a new

dependent variabhb u, which is the reciprocal of p:

1
u =- (24)

P

Ill the present case equation (24) will still be used,

but. for the independent vm'iable it. is more con-

venient to introduce an angle, 0, defined (except

for an additive constant) by

Then

do IV, P*, ,_ °
d-5=-T= o_=__u° (25)

dr-- " _dO (
(

d2p ,1 2 fl 2u' [

and equations (22) become

" d2u 1 2"
2_d-b-_-= -- 2_u +,_u

d_ 1 + JP_u

dO- /9,,3 t/

where

(26)

(27)

1 _)2

_=_ I _, (28)

and the energy equation (23) becomes

/d_t\2 ' _ 2 1
t_) =_u-_ + _ _ (29)

where, for convenience in un'iting, the total energ'y

is denoted by _:

1 , 1
n P,= _W'-'--u--_ _ru_ (30)

/du'_ _ , _ 2' 1 a 1

(105 i - 15
_r4=J4 \_-sin 1--8- sin2 I+_)

there being one additional term for each even
harmonic.

It. may be noticed in passing that tile first of

equations (27) has other physical applications.
For example, if u is interpreted as a distance and

0 as thne, this equation deseril)es the motion of an

undamped spring with a nonlinear restoring force.

The same equtttion also occurs in orbit theory
when relativistic effects are included (ref. 8).

The parameters J and ,r will not be permitted

to assume arbitrary values. For the earth, J_
0.0016, and comparable values seem to be ap-

proprial.e for the other planets. (An exhaustive

study of the physical meaning of J is given by

gcffreys in ref. 9.) In this report the extremely
conservative condition J_ 1 will be imposed, so

that --1/2_(_1. Tile analysis is simplified

thereby, and no planet of the solar system will be
excluded. This does, however, limit the generality

of the anal, sis with respect to other physical

apl)lieations.
It may also be remarked that in general the

angle, 0, does not ]lave any ol)vious geometrical

significance. Qualitatively it. differs from the

argq_ment of latitude, _,, by a small quantity or
order Or. Ilowever, in the case of polar orbits,

0=¢--_ (except for an additive constant). In

the case of equatorial orbits 0=a, and -q is unde-
fined and unneeded. Thus in the two extreme

cases 0 does have a simt)le interl)retation--declina-

tion or right ascension.

To reLurn to the analysis, the energy equation

(29) is integTable in general in terms of elliptic

functions and integrals. Tile precise nature of
the solution depends on the roots of the "charac-

teristic equation"

=--_+u--_u2+ lau a 0 (31)h(u)

Thus the intermediate problem is reduced to

solving tim energy equation (29); once u has been

obtained explMtly as a function of O, the other

quantities can be ol)_ained fi'om equations (25)

and (27) by quadrature.

If higher harmonics are retained in the disturb-

ance function, the energy equation becomes

Thus it is necessary to begin by studying this

cubic equal, ion.

TH_ CHA_aCTnmSTIC Et_VATION

The usual method of studying a cubic equation
is known as Cardan's method (ref. 10, oh. IV).

Making the substitution
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w=_--o-u (32)

gives the characteristic equation in the form

1 [wL_3(z__2)w+2_ 3@_3z27]= 0o(w) ----5

(33)

and the energy equation (29) becomes

/dwV "w)= (34)

The discriminant of g(w) is 27A, where

A= 4(_:--z)3-- (3z2n + 3o-_--2_a)2 (35)

All possible intermediate orbits
classified as follows:

n>0

7<0

7>__yT

n< nv

can now be

escape orbits

bounded orbits

captive orl)its (intersect the planet's sur-

face)

free orbits (do not inh, rsect the planet's

surface)

Free orbits can be furlher classified:

1-{-z
7<7r, _-<_ cntirely inside thc phmet

... l÷z
7_<_<nr,_2-- T entirely outside the phmet

If _S>z, A can be factored

where

_1-- 3z 2

2_3--3z}--2(_--z) 3:2
r/:_= 30_2

(36)

(37)

The curves n=n,, and n=n_ are sho_m in figures

2 and 3 for z>0 and z_0, respectively (for ex-
ample, for equatorial orbits, a--J; for polar

orbits, z=--J/2). The significance of these
curves is the following: If _:>z and n.,_n< 7_, then

the characteristic equation has three distinct

real roots. If n=nL or n_, then the characteristic

equation has a double root. In all other cases

there is one real root and a pair of conjugate
complex roots.

Another important "curve" is the straight line

7=7r-----$--1-1 z (38)

along which u= 1 is one of the roots of the charac-

teristic equation. This line is tangent to the

curve n=n2 at the point

1-}-z 1 1
=_' 7=--2+6 _

Also, bounded, captive orl)its will be called missile

orbits, and, clearly, the satellite orbits are those

that are bounded, free, and outside the planet.

These classifications are indicated on figures

2 and 3. Their proof involves actually obtaining

the roots of the characteristic equation in every
case and examining their behavior as fimctions

of _ and n. Only satellite orbits will be considered

in detail, but appendix D contains a complete

catalog of all possible orbits, with a brief dis-

cussion of each type.

_=j;-

Coptlve es

Miss

/"
/

/
l

/
/ Inte

//

/
/

=r_ I

//
/

// '0: 'r/T

//Free
co orbits / escope

// orbits

/
/

/ SotellTfe orbZts
/

le orbits ///

no I orbHs

FIGURE 2.--Chtssificalion of orbits. Equatorial case:

(see figs. 2 "rod 3). _>0.
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Cop/t{ve

/ escepe

orbits

/

//

/

//

//

//
/

/

//

//

//
/ Free escope

/
/ orbits

/

//
/

//

//

//

//

Miss.l,e ,/, _ _:_2
orbds_otel:ite

// orbits

lrnoglnary orbits

k-lnternal

orb[Is

so that

3 2}3- 3(r}-- 332_ (41)
cos _'= 2(}2__0.)3/2

and the characteristic equation becomes

g(w)=-- 1 [w3--3(}=--z)w-k2(}=--a) 3/2cos 3_']_0

(42)

The three real roots are (ref. 10, ch. IV) :

(43)

u,3=-2_,_-_ cos _-

u. -=}-w_, i----1, 2, 3
o"

and clearly

w_>O

w_<O [

wl+w2+wa=O J

(44)

FIGURE 3.--Classification of orbits. Polar case: ¢<0.

SATELLITE ORBITS

Satellite orbits are defined by the inequalities

n<o

_<nr

>__2 (39)

___l+_r

However, the following analysis is applicable

essentially to the entire region with a positive
discriminant:

Whenever the analysis is restricted, explMt
mention will be made of the fact.

To solve the characteristic equation, define an

angle i" by

sin _3i'--'7-nz, 0< <Tr (40)

The energy equation becomes

(dwy= _ (w-w_ )(w- w_)(u,-_)
3}\-3_/

and there are two solutions (ref.11, eqs. 232.00

and 236.00) :

w=wa--(w2--wa) tn _(fO@C) (45)
and

w=w'+(w2--w')sn'(JO+C)" L '(46)

=w_+ (w_-w_)cn_ (jo+ COj

where In, sn, cn are elliptic functions with modulus

k, and

k_=W_--w2__ sin _"

4z=w,[ --wa __ , __
3}

and Cis a constant to be specified later.

(47)
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Tile first solution, equation (45), is physically
unrealizable, since, if a>0,

while, if _< 0,

u=_'<_<O, p<0

For free orbits (_> (1 + _)/2, ,_< n_) it is conveni-

ent to choose the constant, C, of equation (48) equal
to I£ (the complete elliptic integral of the first
kind) if or>0 and equal to zero if a<0. Equation
(48) then becomes, by virtue of equations (49),

u=uo+(up-uo) cd2Jo ir _>0 "l

fu=u_+(%--u_) c_2fO if _<0
(50)

that is, if cr>0, the orbit lies entirely inside the
planet, while, if ¢<0, the orbit is imaginary, since
p cannot be negative.

In terms of u, the second solution, equation (46)
becomes

u u,+(_-ud sn_(/0+C) "[

J=u_,+(u,-u_) en_ (fo+C)
(48)

TRANSFOR_/IATION TO CLASSICAL FORM

For nmemonic purposes, use subscript p for
perigee and a for apogee. Then

Ua_-'ll, 1

Up_l

Ua_U 2

if _>0

if_<0 t (49)

and, by equation (48), u_<_u_% in either case.
Equations (43) can be used directly to show that
u_=0 when _ 0, anti, on the line _=_r,

. I+C_
up= 1 if (_

]n either case, 0=0 at perigee and O=[g/f at
apogee (of course, this value is never attained for
escape orbits).

Since the nature or the elliptic fimctions cn and
cd is strongly dependent on the magnitude of the

modulus, k, it is desirable to estimate this quantity.
Recalling that _-is a function of ( and n, it can be
shown that, for free orbits (_>(1+_)/2, _/<*/r), _"
has a maximum at _=1, n=nr. Evaluating _"at
this point gives the upper bounds

_'<3 are sin]_/3+_

For the earth, _0.0016, giving, by means of
equation (47),

k_<6X 10-4
_<4XlO -_

where ff is Jacobi's nome (ref. 11, eq. 901.00). As
will bc seen later, these bounds permit the ex-

pansion of the solution in rapidly converNng
series. In particular, considerat)le use will be

made of the Fourier series (rcf. 12, p. 520, example
5)

8,_o= _ _ (_1)
h-2]C2rn = 11__ ff2,n COS

and the relations (ref. 11, eqs. 121.00 and 122.03)

uo Ijf_<l_ °

It then follows from equations (40) and (43) that,
if _ is hehl fixed and n is increascd, then the perigee
distance (p_=l/uv) decreases and the apogee dis-
tance (m=lfit_) increases. This is valid in the
entire region where the disdriminant is positive
(_>_, nz<n<n,) aml is sufficient to prove the
classifications mentioned earlier and indicated in

figures 2 and 3.

cn_fO= 1-- sr_fO "_

fcd_fO=sn ' (fO+ K)
(52)

where E is the complete elliptic integral of the
second kind.

Equations (50) can be transformed into the
classical two-body form by generalizing the con-
cepts of semilatus rectum (p), eccentricity (e),
senaimajor axis (a), true anomaly (v), and eccen-
tric anomaly (E) as follows:
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2

P=_t.+u_ cos (v/2)=c_4O l
v2"_ w 0u.--u, sin ( / ,=,' i:f J

_=P

P k' =_,'1 --k 2
a'-_-_ 1 __ e2

if _>0 tan 2---'_gTT_

if a<O 1

- ]v

t:m 2, (_<1)

All the classical relaiions between p, _, a, v, E,

pp, p_ are thus preserved, as well as the represen-
tation of the orbit as a conic in the polar coordi-

Ilates pj V:

p
(1--ec°sEJ=l+e_ cos vp=a

o.=a (1- _)'---1-_

p.=a (l+e)=_ P-_

sin v
sin E=_/_--d lqZ;-eo s z,

cos E= e-}-cos v
l+e cos v

sin v=_,l_"_-dd sin E
>:Tc_E

cos E-- e
COS V_

1--_ cos E

v--E=2 arc tan ( £sin v_ .'_1+_ cos v+#l----J/

_ sin E "_=2 arc tan 1--e cos E+X_--_ _]

de x,Pl--e--_ l+e cos v

dE--l--e cos E-_ _,!l--e_

(54)

Note first that E does have the usual properties
associated with the term "eccentricity" (see also

eqs. (56) and (57) below):
e=0 if n=n2 (circular orbit)
e= 1 if n=0 (critical escape orbit)

,>1 if V>0 (supercritical escape orbit.), for free
orbits

(53)

If it is recalled that up and u_ both satisfy the
characteristic equation

2 1
_+u.--_u. +_ _up_=0

2 1
,7+u_-_u_ +_ ,Tu_a=0

it is possible to ewpress _ and n as functions of p, a,
fin(] _:

p, _(3+_=). I

=_+_ _ (55)

While every quantity is computable fi'om the
eqxmtions given, their nature is clarified by ex-
panding them as power series in _r, the leading
term being in each case the ordinary "two-body"
wflue. M1 the series given here arc derived in de-
tail in appendix E. Abl)reviated versions are
listed here in order to show their qualitative be-
havior. First define e0 and X by

' }e_=_'4_(n--V,,) (56)

Then the parameters _, p, a are given by

[_ _+4_. /1 ,_,_.='o 12 ^--IL_t 8 _v=/ _'"" " "_l

e'----l+4}n--4_7 l_x--4_. 1+$7_ '3-_="2X=...

...)
(57)



THEORY OF THE SECULAR VARIATIONS IN" THE ORBIT OF A

If it is recalled thai 2_ is the square of the angular

momenimn and _/ is tile total energy, it is clear

that these do reduce to the two-body values when
J=_--0.

It should be emphasized that the orbit is a conic

only in the plane of (p, v). In tim physical l)lane

(p, 0), for equalorial and polar orbits, or (p, ¢) for

inclined orbits, the curve is a distorted conic, the
difference between 0 (or ¢), and v being a measure
of the distortion. The nature of this distortion is

clm'ified by a study of the transformation between

v and O (eqs. (53));
-%

O,12)=,,_Uocos

if _>0

sin 0,/2) =k' sdfO J

%

COS

sin (r/2)=snfO J

Differentiating (by means of ref. 11, eqs. 731.01,
731.11, and 121.00)

1 ) ]_"=2f_/1--_.'2 cos' (v/2)

dv r

_=2Jt. _4io

dv 2f_/l_k2sin 2 @/2) ifa>O

=2/dnfO

(58)

As is shown in appendix E, these equations lead to

the same formal series connecting v and 0, inde-

pendently of the sign of _:

o=K_v+ P....-_-sln my

_J (59)
_.f . m_fo

v= K o--2=.=1 sin _fv

where

6 0 E,_ X2 • • •

B 2 _o 2 ,,.

0 _,, _± _o _2
a--12,,T16 .....

t_°2 _.2

0_---_ .....

(60)

and the
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secular coefficients are

35 . 5_\-2 "]

t (61)

The geomeirical characier of the orbit is now

clearly shown by the first of equations (54)

P
P--l@e cos v

and equations (59). The orbit is a conic section

in the to, v) plane (ellipse, parabola, or hyperbola

according as e<l, =1, or >1). Equalion (59)

simply represents a rotation of each point by the

amount O--v. This rotation consists of two parts:
a secular part, that is linear in v, and a harmonic

part, of period 2_- in v, that vanishes at. every
perigee and apogee. Because of the secular

motion successive perigees do not coincide in their

values of 0 (reduced modulo 2_r). Instead, each

perigee is in "advance" of its predecessor by the
amount

rz 35 5_
(62)

To first order in J, this advance is

2_-J (1--_ sinai)
A0 _ (63)

p_

(Note that AO>O for equatorial orbits and A0_0
for polar orbits.)

For true equatorial orbits (/=0), 0 is i]le right
ascension, and equation (62) gives the lotal ad-

vance of perigee. For inclined orbits, the angles

q, and .q must be studied in order to describe pre-

cisely the motion of the perigee and the node.

It is interesting to note for critical escape

orbits, wiih v=0, e=l, that the asymptotic
direction is

4_K_-
0= _rJ as p_

For equatorial orbits, K/rrf>l, so that the orbit

crosses itself (see rd. 8).
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MOTION OF THE NODE AND PERIGEE

Since u has hecn ol)tained as a simple function
of tile true anomaly, v, the other quantities can

be obtained by quadrature directly from equations
(25) and (27), combined with equation (E20).
The integration is siraightforwaM in the ease of
the node and perigee, and the results are:

f_= _+_v+ _=_a,n sin my
(64)

,,=,,_,+o-_ (a--_,)

or, in series form

_=_p-i-_v+ _ _,,_sin my (65)
I?|=1

where the coefficients are

JPa (K+ _ B1)

JP_ [BI+* K 1

E

JPa B,,+-_ (B.,-l+ Bm+,)
, m=2,3,...

pap m
(66)

where the coefficients ]Tinare given in appendix E,

equation (El9), and the coefiicients for ¢ are

Note that

=Vf-E

B_ Pa
(67)

aa=o(J

=0(J

so timt these series converge ral)idly.
The secular terms, _ and ¢_, can be put in a

more familiar form by inserting the series expan-
sions for p, T_, etc., and recalling that

¢=J (1--3 sin' 1)

Pa=P_ cos I

The results, to the second order in J, are

fl= JeosI l+j5+4}n _g +...s _l

2 2 3 " 2

f,=l+ J (2-5 sin Z) J (1--_ sin I) r_,_, ,_,,
" 4}' + 4_ L_t_--Ik32t_]

To the first order in J, if it is recalled that

2}=p+O(J)

the secular terms are

J COS I

_ = p2 t- " " "

J (2--5 sin2I)

_=1-_ p2 _- • • •

in complete a_eement with the results of refer-
once 1.

sinai]+ . . .

Thus, for inclined orbits, the advance of the
node in one period is

h_=__2_J cos
p2 I+o(j2)

and the advance of perigee is (when reduced
modulo 2_r)

A_=rJ(4-- 5 sin 2I) + O(J _)
p2

I
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Equation (65) can be inverted to give the true
anomaly, r, explicitly in terms of so (see

appendix E).

v=so--so_+ _,, v., sin m so--so" (6S)
sos m = 1 Ws

Kinematics : Kepler's Equation

The kinema|ies of tilt, motion are given l>y equa-

tion (25)
dO
_=1"_ __

To second order in J the eoeglcienls are

.... _- t
vl so_ (69)

Since the equation of the orbit, is

P
P=lq-e eos v

it is eonvenienl {o have a series for cos v in terms

of so (see appendix E):

cos v= _ (_ cos m so--so' (70)
m=0 _s

To second order in J the coefficients are

1 •
('to = --_ ffl

C,=l _1 2 1

(7_)
c_ 1

_--2 Vl

Ca=_ V2

Inserting u from equation (54) and dO/de from

equation (58) gives

dr p_ 1
_>0

&! 2J'P¢ (1 +e cos _,)2 x.'l_k_.eos2 @/2)

dr pe 1

&, 2.fP¢ (1 +e cos v)2 x"l --k2sin 2 (v/2)

Expanding the radicals by the binomial theorem

and integrating term-by-term gives the general-

ization of Kepler's equalion

.lI--= n, (r-- r,) = _ .1</c "_ (72)
m=O

where 3I can be called the mean anomaly and n

the mean motion, with

I

all([

/2m_ _ =',:u2 f_ e°s2" (¢/2) ,. ¢>0
.ll,,,=_m)(1)'_(' e j J0 (l+_eos_) 'aw'

These inlegrals are evaluated in appendix E; the first, three are

Mo= E-- e sin E 1

.. 1-be

.I,_=_- (E+sin E)

1I_= & {(1--_=)a/' v-- (1 Te) =[(1 q:2_) Eq-_ sin E]?
" 32e

(74)

592524--61-----3
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the upper sign to be used when o_-0, tile lower
when _ 0.

Note that equation (72) reduces to the classical

form of Kepler's equation in the ease of vanishing

oblateness (a=0, k=0, p=2},.f= 1/2).

The analysis is now complete. The kinematical

description of the orbit is given by equation (72),
the geometrical description by equations (53),

(54), 164), (65), (68), and (70). A numerical

example of the use of these equations is presented
in the next, section.

NUMERICAL EXAMPLE

ORBIT DETERMINATION

As an illustration of the present theory, an inter-
mediate orbit will be fitted to the satellite 1958

/32 (Vanguard 1) for the epoch 02 November 1960,
1227 U. T. (ref. 13). The six given pieces of data

are

Auomalistic period 134.03048 rain u tes
Inclination 34° .245

Right a._een_ion of

ascending node 131 o .796

Argument of perigee 47 ° .691
Eccentricity 0.1 g977

Mean anomaly 222 ° .764

The convent.ional methods of celestial mechanics

give an osculating ellipse wilb

Semimajor axis 1.3601810R
Semilal us rectum 1.3111973R

Solving K.epler's equation gives the position at
epoch

p=1.._661320
_,=258 ° .6233

To fit an itderme(liate or}fit to these (htta, 0m

following quanlities will be preserved

[ Inclination

Right ascension of ascending node

n Energy
} Angular momentum

p Geocentric distance

_o Argument of latitude

The quantities ,7and _ are directly obtainal)le Dom

the semimajor a.,ds and the semilatus rectum by

meansoI'equation(55) with¢=O. Thus, thedata
are

Epoch 02 November1960, 1227 U. T
[ 340.245

131°,796

n --0.36759813

} 0.65559865

p 1.5661320

258°.6233

Straightforward apl)liealion of the series expan-

sions (appendix E) gives

a=0.000852176

X=0.00198268

_=0.19063927
e=0.19063815

a=1.3599642

p=1.3105392

2/=0.99953549
n =0.63039973

k2--0.000126172

K/_J--I.O0049629
AI--0.0000315437

,'12_ 7X10 -'°

BL--0.0000315584

B2=7 X 10 -m

9, = -- 0.000781244
_2,= --0.000148959

122-----1X 10 -9

_8= 1.00114 2097

_ -- 0.00015 4694

_2= 1X 10 -9

vl = -- 0.000154518
t'2=l XI0 -s

C0=0.00007726

C, =0.999999986

C_=--0.00007726

Ca=5X10 -g

Since the value of p at epoch is known, the value

of the eccentric anomaly, E, is obtainable from

p=a(1--e cos E)

the true anomaly, v, from

]?

P=l@e COS t'

and the mean anomaly, M, from Kepler's equation.
The values are

E=217°.3246

v=211°.1216

11/'=223°.9521

Since the values of o, _,, and v are known at epoch,

the values of t_p and _o_ are obtainable r,'om equa-

tions (64) and (65). Summarizing, the equations
of the orbil_ are:

ti
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1----34°.245

p=1.3599642(1--0.19063815 cos E)

1.3105392

--1+0.19063815 cos _,

f_= 131°.9565--0.000148959 v°- 0°.00853 sill V

_-=47°.3064+1.001142097 v°+0°.08863 sin v

v°=0.99885921 (¢°--47°.3064)

--0°.008853 sill [0.99885921(¢°--47°.3064)]

COS V=0.000077259 {l--cos 210.99885921(_° 47o.,3064)]}

+0.999999986 COS [0.99885921(_°--47°.3064)]

(75)

Kepler's equation is

M'°=223°.952+2°.6860248 t(minutes) !=1.000025530 E°--10°.92130 sin P2
(76)

Anomalistic period= 134.03048 minutes

sin ?,

sill E=0.9816603S l +0.1906-3815 cos t,

eosE=
0.19063815-boos v

1+0.19063815 cos v

sin E
sin r =0.981660281 -- 0.19063815 cos 1£

eos E--0.19063815
COS 1__

1--0.19063815 eos E

(77)

To ol)tain the velocity eon_ponents, equations

(14) and (28) give the horizontal component

Thus, for this orbit,

V=15451.40(1+0.19063815 cos v) milesflmur

To obtain the vertical component, equations (26)

and (58) give

dp____p,2 f _/ _k 2 du_-- 1 e°s" ; dv

Since u= (l/p) (1 + e cos v), the vertical component
is

dr 2 fl_
sill _ l--k _ ('os2 2 2_dt p

Thus, for this orbit,

=2944 259 sin r-_/1-- 0.000126172 cos'; miles/hour

The orl)it is a spiral, with a fixed perigee and

apogee for each revolution. The altiuules of

perigee and apogee are 399.1 miles and 2454.2

miles, respectively. The speed at, perigee is
18397.03 miles per hour, and the speed at apogee

is 12505.77 miles per hour. Each perigee is

0°.411155 in advance of its predecessor, and each

ascending node is 0°.28125 west of its predecessor
(in right ascension).

EPHEMERIS COMPUTATION

Computation of position at specified times,--
When the time is specified, the procedure is lo

compute the eccentric anomaly, K, from Kepler's

equation (eq. (76)), the true anomaly, z_', from

equations (77), and the remaining quantities from
equations (75). This has been done for various

times, and the following table shows the com-

parison between predicted and observed positions

(tim "observed" positions having been computed

from the data of ref. 13).
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Observed Predicted

09 Nov. 1960, 1227 liT. T.

_, 351 °.731 355°.596

Aliilude 112g.9 lliilc's 1109,2 miles

_1 110°.630 110°.655

25 Nov. 1960, f227 U. T.

¢ 31°.-t37 3l°.282

Aliiilide 1735.5 m/los 1737.2 iniles

fl 62°,215 62°.307

Computation of time of equator crossings. To

compule lhe time corresponding to a proscribed

position, the procedure is Io compute v fi'om _, by
equalion (75), E from v by equation (77), and l

from Kepler's equation. The following table

shows the comparison between predicted and
observed times and allit udes:

PllsS llO.

10360
10361
10535
10651

Dale

05 Nov. 1960
05 Nov. 1960
21 Nov. 1960
02 Dec. 1960

Observed time

i_-2 --3£-_8IIr MJn Soc

1, :;4 153
18 59 15

,2 .12 06

Predicted time

fir i ._lil, I _oc +

,'.7-'77
18 o9 10

13 42 1S

Observed Predicted

aliil u(h,, altiludl,,

km = kilt

i
1282
1290
3219
3941

1269
1278
3221

3950

ORBIT ACQUISITION

In this section the cqualions arc displayed that.

provide the eh,ments oF an orbit wllen the position

and velocity vectors are known at a given time.

Specifically, let the position be specified by

The equations of appendix A ilion yield

cos I--cos 80 sin/7

sin (%--.%)--Jan 6o etn [

cos (%-- a0) -- cos/3/sin I

re geocentric distance

ao right ascension

_o (tc('liilliiion

L(,I the velocity vector, as soon 1)y an observer on

the carili, be specified by

I'o speed relative to the earth

¢7, azimuth, clockwise from north

7, flighl path angle, upward from the horizontal

Denoting the earth's angular spin velocity by co,
the velocity componcnls with respect to the

inertial coordinate system are found to be

t_, = Vo sin %

V_= 1o cos % sin/7,,-+ ro_ocos _o

ga = E cos -/, cos _,,

The horizontal component of the velocity with

respect to the inertial coordinate system is

lL= (IL_+ I5 _

and its azinmth /3, is given by

c:,s/7=!-_ ,, sin B=V;

which deiermine the inclination, f, and the right
ascension of llie ascending node, fie. The dimen-

sionless geocentric distance is

Pc = ro/'_

Uo= 1/Po

and the diincnsionless velocity components are

The parameter ( is given by equations (28) and

(14)

and tile dimensionless energy, _, is given by equa-

tions (30) and (20)

1 24 +_ l
n--2 (lI'_ -, lie )--%--_ _Xoa

3 sin'- I),=J(1-2

The various parameters a, p, e, f, etc., are then

oblained fi'om ¢ and ,/as in lhe preceding section,

by means of the series expansions of appendix E.
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The initial value of the argument of latitude,

_0, is given by (see appendix A)

sin _o
sin ¢o= sin I

cos _0=cos _0 cos (ao--_o)

The initial value of the true anomaly, v0, is

given by
P

P°=l+e cos V0

To determine the proper quadrant note that

dp 1 dudO 1 dudodO esinvdvdO
Wp=_= u2 dOdr= us dv dOd--;= u_p dOd_"

so that TVoand sin v have the same sign.

The eccentric anomaly, E0, is given by equa-

tions (54), and the mean anomaly, -_f0, by Kepler's

equation. Finally, with _, ¢, and v known,

the remaining constants _p and Cp are given by

equations (64) and (65).

RELATIVISTIC EFFECTS

It was mentioned earlier that the energy equa-

tion (eq. (29)) has an application in the general

theory of relativity. The mathematical rela-
tionship between relativistic and oblateness ef-
fects will now be examined in detail.

Let r, 0 be the polar coordinates introduced

previously, and ]eL t bc the proper time and t, the

inertial time, that is, t is measured by a clock at

the point (r, 0), and t, is measured by an identical

clock infinitely far removed from all matter.

Then the relativistic formulation of the equations

of nmtion of a particle of negligible mass about a

body of mass :air at the origin of coordinates con-

sists of the follm_qng three equations

/ l_2r_ (dt ,_' 1 /dr\ 2 r_ /dO\ 2

(78)

tit, -(l+(2E/c =)
7f-- 1--(2U/c') (79)

2dO ,1
r 8_=_ (80)

where c is the speed of light, U is the negative or

the Newtonian gravitational potential or the mass

21 at the point (r, 0), E is the total energy per unit

mass of the particle, and B is the angular momen-

tum per unit mass of the particle. Equation (78)
is Schwarzschihl's solution of Einstein's field

equations (ref. 14, p. 166, eq. 4.21a), equation

(79) is thc "clock-equation" (ref. 8, p. 182, eqs. 6,

7, 10), and equation (80) is the law of conser-

vation of angular momentum.

These equations can be transformed into the

notation of the present, report by means of the

following definitions of dimensionless variables:

P_= B/_ l

_= (1/2)P_3

,7=RE/u (81)
r = t-_'_//?a |

3r,=t, x."-v/Ra

u= R/r, v=u/Rc 2

Eliminating t, between equations (78) and (79)

and transforming to the dimensionless variables

gives

/du'x = _RU ,u 2 (l_2U'_ (82)

dr 1

dO--Pvu 2
(83)

d r_ = -_./l_-_v _

dO Pvu _ 1--

(84)

For the internlediate orbit about an oblate planet,

giving,

with

/dun = _. 1 , a 2
t_) =,+.-_ +_ _ _ +_ _ (86)

_' =_+6_ (87)

For the earth, v=6.95_10 -_° while a=0(10-a).

Thus, in equation (86), the ratio of the quintie

to the cubic term is, for bounded orbits

2v_u.__vp_d< v(1 +_)_<3X 10 -_
P

so that the quintie term can safely be neglected!

Similarly, the second-order terms like ¢v, k_v,
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v2 will be neglected throughoul. The equaiions
can then be reduced Io the following form

,1__ I (8S)
dO ]'_U 2

d(r_--r) dr. 2v
de =_ _+-P_

The solulion of the first two or equations (88)
has been obtained:

l

u=a(1--_ cos E)

nr=E--_ sin E-t-0@')

The third of equations (88) can be inlegrated by

transforming to the eccentric anomaly, E, as

independent variable, an<t neglecting second-order
terms. Its solution is

n(r,--r)=o_ a (3E-}-_ sin E)

with perigee at the time origin. When the periodic

component is neglected the secular portion can be
written in the form

3v t= _ t, (89)
t _-- t =oTa. 2a

To eliminate the inertial time, consider equation

(78) applied to a clock on the earth, with its time

denoted by t_. With dr/dt--O and @tilt=7X 10 -_,
it is found that

t,=(l+v)t,

and inserting this in equation (89) gives

Thus, a clock in an orbit whose semimajor axis

is 3/2 the radius of the earth would show no secular
deviation from an identical clock on the earth.

For smaller orbits, the satellite do& wmfld run

more slowly than the earth-bmmd clock, and for

larger orbits the satellite clock wmfld run faster.

Inserting the numerical value of v for the earth

gives

3 1
(t_--t) ..... _.:0.0219 toga--) (G) .....

Thu_, {he maximum attainable difference in clock

rates is 0.02 second/year, which is probably not

detectable by current techniques.

Sinlila,'ly, the r(,lativislie effect on the shape

of lhe orbit is equally insignificant. Inserting

equation (87) into equation (62) gives the rela-

tivistic effect on tim advance of perigee as

A0= I0,_0_ de_ees/revolution
P

In the worst case (f_l) Ibis gives

A0-- 0" 0027/r evolut ion

and this quantity decreases linearly as the size
of the orbit increases. In contrast, the advance

of perigee due to oblateness is

A0_360J
-- p2 degree/revolution

In the worst case (p-_l), t])is gives

A_ 0 o .584/revolut ion

DISCUSSION

The intermediate orbit presented in this report

is essentially a closed-form solution of the main

problem of artificial satellite theory; it is exact

in the case of equatorial orbits, and, as indicated

by the numerictd example, is quite accurate for
inclined orbits. (It can be called a closed-form

solution because of the extremely rapid con-
vergence of the series expansions.) As in the

elassic_d two-body prol)lem, the kinematics of

the orbit arc described by Kepler's equation.

When the time is prescribed, this is an implicit

equation, containing as unknowns the two anom-

alies, E and v. Their values can be determined by

an obvious iterative procedure involving both

Kepler's equations and the classic'fl relations

between E and v, equations (54). (In the numeri-
cal example this was unnecessary because of the

extremely small value of the modulus /c, which

permitted 3La to be neglected, thus eliminating v

from Kepler's equation.)

The qualitative nature of the approximalion

can be deduced heuristically from equations (11).

The neglected portion of the II'amiltonian, Ill,

is proportional to eos 2_o, a strictly periodic func-

tion. This suggests that the intermediate orbit
is exact in its treatment of secular phenomena,
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and is in error only in the periodic terms. This

conjecture receives partial conFu'mation from the

numerical example; the errors seem to oscillate,
and even after 30 days no systematic _owth is

apparent.

Two further steps are needed to improve the

theory. One is to solve the perturbation equations

(appendix C) to determine the effects of the

portion, [I_, of the IIamiltonian. The other is to

include higher harmonics in the earth's gravita-

tional potential. This second step could be split

into two by separating the higher order terms into
secular and harmonic portions, as was done in

equations (11). These steps should provide

significant improvements.

AMES RESEARCII CENTER

_ATIONAL AERONAUTICS AND SPACE ADMINISTRATION

.'_{OFFET FIELD, CALIF., Feb. 2, 1961



APPENDIX A

COORDINATE TRANSFORMATIONS

The transformation equations between astro-

nomical (o, c_, 5) and orbital coordinates (p, f_, /,

e) are obtainable by either vector methods or the

methods of spherical trigonometry (see ref. 5).

The following" redundant set is sumcient for 1he

purposes of tlfis report.

sin 5=sin/sin *,

cos ,,=cos 5 cos (a -o)

cos/=cos 5 sin

cos I sin _---cos 5 sin (c_-f_)

sin I cos ¢=eos 5 cos fl

tan (a-f_)=cos I tan

(A1)

Differentiating gives the partial derivatives of
the transformation from orbital to astronomical

coordinates :

b5 sin Icos
_eos

b,, cos 5

b5 cos I sin ¢-_sin fl sin ,,
b-I= cos

ba cos I sin

b,, cos 2 5 cos

ba sin e cos ,, sin [ sin *, cos
_--'-- COS2 _ COS 5

_OL

bf_

(A2)

Now if S is a function of position, so thai.

S=S(p, ,_, 5)---S(p, a, I, ,,) (A3)

then the partial derivatives bS/b.q, bS/b[, bS/b,,

are not imlependent, but. satisfy equation (4).

To prove this, take the partial derivativcs of

equation (A3) :

b-_=-gg ba b5 bn

bS bSba. bS b5
-b-7=5-g 3g

bS bSba bSb5

If this is regarded ,is a set, of three simultaneous

equations in two unknowns, bS/bo_ and bS/bS,
then the determinant of the augmented matrix
must vanish :

bS b_ b5

bS boLb_
b[ _I bI =0

bS b_ b5

b,, b,, b,,

Expanding anti using equations (A2) gives equa-

tion (4)

bS bS bS

5-_.= b_ cos I--_i sba I ctn

Thus the formulation as a canonical, Hamiltonian

system (eqs. (7) and (8)) is valid for an)' dis-

turbancc function, S, thai. depends only on

position.

22



APPENDIX B

PHYSICAL SIGNIFICANCE OF THE CANONICAL CONSTANTS

The formation of the problem in terms of the

IIanfihon-Jacobi equation consist of equations
(15) to (21). While this method of solution was

not used, it is important to discuss it in order to

prepare for future work involving the perturbation

equations of appendix C. In particular, such
work will require a physical interpretation of the
canonical constants.

Equations (15), (18), and (30) give immediately

bF
n=Pp=---_r=[Io= total energy

where p0 is an arbitrary constant.

(17), (18), and (B2) _ve

£,1Q,=-r+ o_dP

J po ._f2h _ dp

Equations

Equations (16) and (18) give

bF

P_=-_=p_= angular momentum

p bF
n=_=-pu=polar component of angular

momentum

Equations (5), (16), (18), and (21) give

_-_r-- ,_ \p/-----dp-p (21)

where h is the cubic

/1\ _ 1 1P_ _ "1
[

/3 Pd 1\ ]*/ (B1)

Integrating equation (21) formally _ves

F=f ,2, 2fO_lp (B2)

Equations (21) and (12) then _ve

Q"=- 3,o_

o dr d_

Thus, if po is perigee,

-Qo=rp, time of perigee passage

O_= _o_, argument of perigee

Qu=ft_, right ascension of the node at time

of perigee passage

This compIctes the identification of the constants.

They are the natural generalization of the

canonical constants in the classical two-body

problem (ref. 7, p. 148).
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APPENDIX C

THE PERTURBATION EQUATIONS

GENERAL THEORY OF CONTACT TRANSFORMATIONS WITH DISSIPATIVE FORCES

The general theory of contact transformations
for conservative systems is well known (see, e.g.,

ref. 7, eh. 10). The purpose of this section is to

ex_end the theory to include dissipative forces.

To do this, consider a canonical system

where use has been made of Einstein's summation

convention thaL a repeated subscript is to be

summed over the values 1, 2, 3.

Multiplying the first of equations (C4) by

bpgbQk, the second by --bq_/bQ_ and adding gives

dq, bH E "1

dp, bH, ,7 1

-37=-_q_ t", J

i- 1,2, 3, . . . (C1) where

[P/&] _+[G,Q.1 de& bH,, ..

(C5)

with generalized coordinates, ¢, momenta, p, and

forces E, /7. Let the Itamiltonian be split ar-

bitrarily

H IIoqH_

and let

(C2)

be a solution of the reduced system

and the Lagran_an brackets m'e defined by

bq_ bp, bq__ bp_A_[x,y]=--[y,x]
bx by by bx

x, y denoting any of the variables P, Q.

Similarly, muhiplying the first of equations (C4)

by bp_/bPk, the second by --bqjbPk, and adding

giVeS

[pj,p_] dPj+ dQj bTl_ . y
-_r [QJ'P_] --dTr=-_, q- _

b q, OHo "]
br bpi

bp, bile
Or bq_

(C3)

where P, Q are a shorthand notation for the six

constants, P1, P2, P3, Q1, Q2, Q> The equations

(C2) can be made to satisfy thc complete system

(CI) by allowing the constants P, Q to become

variables. This transforms the system (C1) into

the system

2-t

bq_ dPj F bq_ dQj blL 1

bp, dp,__ _p, dQ, _t[, , ,7
 -a-QQ, -gT=-ag,e,

(c4)

where

Y,=E, _--F, bq, (C6)bPk

Now, if the transformation from (p, q) to (P, Q)

is a contact transformation, the Lagrangian
brackets reduce to (ref. 7, ch. 10)

[Qj, Q_]= [Pj,P_] = 0

[Q,,Pk]-= { 01ifj#kifj=k

and the varinbles P, Q satisfy the canonical system

dG OH,.±+. }

_rr =_T_k (C7)

dP, bill
d-T= bG =v_
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This is the general formulation of the theory of

contact transformations with dissipative forces.

PERTURBATION EQUATIONS FOR ARTIFICIAL

SATELLITE THEORY

To apply the resulls of the preceding section to

artificial satellite theory, identify the subscripts 1,

2, 3 with p, _,, a, respectively. Instead of using
the P, Q notation, it. is convenient to take as new

coordinates (see appendix B)

_PP J

(C8)

and, as their conjugate momenta,

P_ P_ t

Pa =pa

rp = -- Qp

(C9)

The generalized forces E, F are found by identi-
fying equation (C1) with equation (8):

Ep_ 0

E¢ pl)vDi sin
P,_ sin I

Ea= pDz sin
1', sin I

G=D,

G,=pD,

Fa=p(D_, cos I--Dx sin I cos 9)

(C10)

with, of course,

I= are cos Pa/P,

Since Cp occurs only in the expression for _ and

ap only in the expression for a (eqs. (64)), it
follows that

b_,= 59.
b_. 1 --= Ib-qp

25

and all the other partial derivalives with respect

to _p and f_p vanish. Similarly, from equations
(C9)

5P¢ = i bp_2= 1
bP_ 51'a

and all the other partial derivatives of pC and pa

vanish. Also, from equalion (11),

j p,2
(Cll)

so tlmt [[_ does not contain 9 and contains _p only
via _. Hence

bH1 OIL bill

b 9 5_,, 5_

Combining these results with equalions (C5) to

(C7) gives the canonical system of perturbation

equalions for artifi(.ial satellite theory:

dg.
dr

. bH_ bp _, b_ _ 59 (C12)

dP_ bH,
& be _-F,,

dP,_

dr

dTp

dr
OHm ., bp_a_F bf_

(C13)

Equation (Cll) eouht be generalized to include

higher harmonics in the earth's gravitational

potential without invalidating any of the subse-
quent analysis.

Equations (C12) and (C13), then, are the
perturbation equations that must be solved to
improve the intermediate orbit. While no at-

tempt will be made to solve them here, it may be

remarked that tliey are subject to the usual
difficulty: the right members contain the oh1

coordinates (p, ¢, ft) as well as the new coordinates

and momenta. Furthermore, the old coordinates

have not been expressed explicitly in terms of _"
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and the new variables. Rather, the coordinates

have been expressed in terms of the new va_ables,

the true anomaly, v, and intermediate parameters

like a, p, e, )[-,f, etc.

The true anomaly is related to r by an implicit

equation, namely, Kepler's equation. It is for

this reason that so much emphasis has been

placed on series expansions (see appendix E),

since they form the only basis for attacldng the

problem of expressing the partial derivatives in

equations (C12) and (C13) in terms of tile new
variables.



APPENDIX D

CATALOG OF ORBITS

While the main purpose of this report is to
develop the theory of satellite orbits, other types
of orbits merit some mention. Ill this appendi×
the complete catalog of types will be given, with-
out proofs. In every case the proof consists
merely in solving the characteristic equation
(eq. (33)) and then integTating the energy equa-
tion (eq. (34)). When elliptic functions and
integrals occur, reference will be made to the
appropriate formula of reference 11.

TYPE 1. 0<_2<¢

The equation of the orbit is (ref. 11, eq. 243.00)

u=uL + A tan2¢_
where

1 F---'- 2
ul=- ((--2_,,--( sinh _')

O"

A =-1 _/3 (z--_ 2) (1+4 sinh2D
O"

and the angles i" and _ are defined by

sinh 3_"-3'r2_-k 3°_-2_3

sin 2+=sn 2Jo

k2 1 1
=_+_ sinh _'_/1 +4 3sinh2i:

If n<7/r, then u>u_>l, p<l, and tile orbit is
entirely inside the planet. If n>nv, then u_<l,
and the orbit intersects the surface of the planet at

g,=arc tan _/i/ A

The orbit has no perigee; instead it approaches
the center of the planet (p=0, u--¢o) as

71-

_-+_

o-+) K (t.)

If ,7<0, the orbit, has an apogee at.

0_0 it-- 7/1

]f _>_0, the orbit is a captive escape orbit, with
the asymptotic direction (as p + ¢o)

are tan

For realizable orbits, ,t>,Tr and

3a 2 1 1
2 4

Thus, for equatorial orbits about, the earth, with
¢=0.0016,

0.4827_k2_0.9330

For this range of values of k, the transformation
equations between 0 and _ can be approximated by

1 , , _rfO
sin 2¢-_'--_ _ann R-r

o=K' 14--_ sin 2¢
2re] In 1--_ sin 2_b

where K' is the complete elliptic inte_al of the
first kind _qth the complementary modulus

k' =._o

(see ref. 11, eq. 127.02).

TYPE 2. _==¢>0

27
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This is simply a special case of t.sq3e 1, with

I1 1 --1
_q-_,_ if _>_

L1 1 --1_--_,,_ if n<.3_ _

There is also the degenerate case when )7=--1/
(3_._). The characteristic equation has a triple

root., and the equation of the orbit is

u=_ l-k
_"0"

Since g< 1, u>l, p< 1, and this orbit lies entirely

inside the planet.

TYPE 3. _2>o', n>_,

The orbit equation is formally the same as for

type 1 :

u=ul+A t an_b

but now the parameters are defined by the fol-
lowing equations:

_ =_- 2 _,",_- _ eosh _"
(7

A =1 .,3(_ - #) (4 eostg f-- 1)
(7"

cosh 23f n-n.,., f>0
2 r/x-- _.,

eosh 3f =3_¢ -b3@--2_3

sin 2¢ - sn 2re

0-=2_ F(2_, k)

k2 1 1 _/ 3
=_+_ cosh 1".¥ 4 cosh _ t--1

Thus

2 4

and the same apwox-imations can be used as for

type 1.

If a>0, there is no essential difference from type
1. But if a<0, there is an internal perigee at

P=u-7< -5-

and, at perigee, the orbit is convex toward the

center of the planet. Outside the planet, the orbit

is essentially like those of type 1.

TYPE 4. _=>_, _=n*

The energy equation has two solutions:

u=u_+A ctnh _ fO

u=u_+A t'_nh_'fO
where

_1:
O"

o"

The first solution is unrealizable; if _<0, then

u<0, o<0, which is meaningless; if o->0, then
u>l, p< 1, and the orbit lies entirely inside the

planet.
The second solution is simply a special ease of

that of type 3, with _=0. But. now, if _>0, there

is no perigee. Instead, the internal portion of the

orbit is a spiral that approaches the circle o=_

as 0---_. If _<0, the orbit is essentially like that

of type 3.

TYPE 5. _>_, )_<_,,

This type is ob(ainable formally from type 3

simply by ehan_ng (he sign of eosh _'. But now

the orbit is imaginary if #< 0 and internal if z>0.

TYPE 6. _>z, _=n_,

There are two solutions. One is the degenerate

case of type 5 with _-=_. The other solution is

o"

t.lmb is, a circular orbit. If (< (1 ,-I-z)/2, the orbit.

lies inside the planet, otherwise outside.

TYPE 7. _>_, _2<n<_7_

This type is, of course, the one discussed in the

body of the report. For the captive orbits, the

eccentricity e, and modulus k, can both be large,

so that the series expansions may not be valid. In

this case, other expansions of the elliptic functions
must be used (see ref. 11, eqs. 125.02, 126.01).



APPENDIX E

SERIES EXPANSIONS

The series expansions _ven in the section on satellite orbits are based on the definitions of n2and ,o,

equations (37) and (56). Expanding the first by tile binomial theorem and insert.lug the result, in the
second gives

'°2:45_ + m_]=25

Equation (40) can be transformed, by means of equations (37) and (56), into

2 [e_,'_,'. _ (1__X)_3/4]_'----_ arc sin

The binomial theorem and the Maelaurin's series for the inverse sine give

_. 1 ¢_X]_,31 _- [1+3 Xq_ 21+_32 )2_ 77+9'o2 X34_(1155_117%2_4_12S - --\2-048--_--_/_27e_'_'4 /43S9"+(,,S-192+_-P8-1"_2)x663_2 " 81,,,'\ _ ...]

From this the successive powers of _" can be obtained and thence the trigonometric functions. The
useful ones are

sin _'=gl ,0Ixl, ._ [1 +3 x'-t- 1 s9 +5,o'
77+5'o _ Xa

V-_ 12S

+(1155V65,o2 . 77,04\ X4 /43_9 1105,,3 385e,_\ (E2)

4 35_02 't14

eo_ ,o'X_ (5'o__4_'"'_X__(_+l_)X5 (105'°'_l._°'_.I_ 7'o_'_X_...cos _'= 1--24 X_--I-C) ' --\_"--_) --\_--_2--_/ (E3)

and, if a._0,

71" ] ,-- 'o '0 '0 2 _3
sin (f +_)=_ n'3 [1 +gX +(S--.g-i)X°-4-(7'°'--\-_---1-6)--_/'(3-1-5'°a "_

_t_k_/77,o 5,,'64 _7655'°z 4:_2,] "--\4096ec""1X4_-( 3S5e° 3.5,o'.384"6-i-_1-65'°_1--_--_]'°'-I- 77'°_ "_ X_...] (E4)

while the sign of ,o must be reversed when a_0.

It is now simply a mailer of algebra to substitute these series into the definitions of the parameters,

k, f, p, etc., giving the following expansions:

P:2' (1--1-_ '----_x-I +'n-}'n' x'-2 + 3_n-''n_+'3_'_ x3-'5+ IO'_-_-_;_'-''_' x' " " ")927 81 (ES)

12 x-_ -t s _/"-_,1_ -_s(_4 24 t-.W)×-[_-t 2_02 _4 72 _/

(E6)
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Squaring this and using (El) gives

1-_-2_7 1+_7--3_272 X2 4_7
d=1-]-4}_--4}7 _-- X--4}7 9
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2+3}n--3(272+4}'_Ta Xa
27

--4}7 8l

Tile second of equations (55) can be solved for a in terms of 7, _, and p:

'4_ Scr7
1 /i+--

a= 47 ' _/ 3t)

The binomial theorem and equation (E5) then give

Equations (47), (E2), and (E4) give, for a_0,

-t-(_--_) -I-(_-2--_-t-_.) k.'IYS 16--12S 2_S}

/1155 35eo+3252,} 72a_nt1967e_,4"_X4... ]

and again the sign of _0must be reversed when _<0.

Equations (47) and (E4) give, for a_0,

2 7
f_--IEl--(`I--e"'_X--('_3- 'n-J'-?e°r'_X--(128\4 12J \32 24--2881

and the sign of eo must be reversed when ¢_0.

e° _352J32

£S-S/X --(,2NS
5_.. 352,,2 Eli3+28'%o 4)_4...7

J

(E7)

(ES)

(E9)

(El0)

The complete elliptic integral, K(k), has a well-known expansion in powers of/_" (ref. 11, eq. 900.00):

K= 2/ k _ 9_"4 25U 1225k _ 3969/P °65536'")

inserting the series for t? (eq. (Eg)) gives, for a)0,

e,x_a_t_eo.j.. _o"_,emd7eo_l_ eo2_l132___.x__l_g77e,,15e,,2_.l13eoaA_ a13_o' '_X 4

and the sign of _0must be reversed when a_0.

Combining with the series for f (eq. (El0)), gives the secular coeffieie,ils of equ,ttions (61):

/___=l_t_l_ , /" 35 , 5_7"_.,, /" 385 _35_7"_ ..__/' 25025 _5005_7_385}_7_'_ X4 " .. (El2)
4 4 it_l_2t_s) _-tk2_04t 1922) A' t_tTs4--_t 97_ )

1 . /'23 . .5_v'_ V ('211 _1_25}7"1 x_ (' 12269 4 995}74_95_'7_'_ X4.. " (El3)
_¢-_-_ x-t,Y_2+S;-) " -,,z_-i- a_55-_f - -\_- _2--_/

1
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Note that when the series for K and J are com-

bined, the odd powers of e0 disappear; eliminating

the even powers by means of equation (El) gives

equations (El2) and (El3), which are independent
of the sign of _.

Jacobi's home, q, has the well-known series

eo e, _ 7_0 13Eo3 a 77_o I3e_ 3

and tile sign of _0 must be reversed when <_<0.

Two other quantifies that occur in certain Fourier series are

and

representation (ref. 1I, eq. 901.00)

]c2 /1 ' k2 15J]:_ 75/:6 1707ks I
q=Tg(, +g+2-_+_o_ d 65536 "" ")

Inserting the series for k 2, equation (E9) gives,
for ,_>0,

X_ . . . (El4)

eo 5_o 2 2 7co 5co 2 13co 3 3 77eo 25Eo2 13co 3

2_s / X_ . . . (El5)

K--E 1 eo X _o 833+30S_ Xa_/eo 10549d-S3165n X4 . . (E16)2 _ = @_-_ +:_X2@% 27648 331776 "

Equations (El5) and (El6) are valid as written

when _>0; when cr<0, the sign of e0 must be re-
versed.

The series relating 0 and v (eqs. (59)) are ob-

tained as follows. Begin with the Fourier series

expansions (ref. 11, eq. 806.01)

1 _ Am cos _V ]

_/1--k 2 cos 2 @/2) ,_=o J1 -- _] (--1)"5'1,,, cos zn.v
_,/1--k 2 sin 2 (v/2) m=o

(El7)

where

2K
Ao--

= 2j py,
Am-----2j=_(j)_.2J)\_] ,m=1,2,3, ...

}
(E18)

The first four eoeflhqents are

1 k2 3k_ 75k6 245kS
+ 1=_-t- 16-t-_--1-)_48 ...

/ 3k4 15k '_ 245k _
%=6_ +2_ -+ 4_9G " " "

_ 5k 6 35k s
A_=5-i-_+2_8. • .

35k s

16384 • " •

Next define coefficients B,,, by

Bin=@ if _>o

Bm (-1)°'A,,,
2f if _<0

If the series for k _ and J are introduced, the usual

reversal of sign of _o is nullified by the factor

(--1) '_, and the resulting expressions are inde-
pendent of the sign of _. The first four coefficients
are

1259, 107_n'x
/&=12=cox [1 -t-X + (1_:52-t=_+] Xe+('539\4__3__2__5-_6]4-53.5_,'_ X3 . . .]

_3

B_=_5e°X3 L'r"-C4_-t=(_-{- 1o,%) x . . .]

B_ 35 (1+8_-+16_n _) X_ . . .
1327104

(El9)
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Inserting these Fourier series in equation (58)

gives
dO K.:--,,
,-_,,-_-:.-t- 2..5 J_,_cos rm, (E20)
Ut _J m = 1

Integrating term-by-term gives the first of

equations (59)

O=_ v+_ B'_,_=Im sin my

Conversely, to express _, as a function of 0, begin

with the Fourier series (ref. 11, eqs. 908.08, 908.03)

-0 _r 4_ _ (--q)'_
2k' nd f =_.+_ _=, 1+¢"

:r 4_r q'_
2 &/O=R+- R _, 1+ ¢"

cos- 0, l
m_/ ,<0J-- cos _ 0,

(E21)

Inserting these series in equations (58) and inte-

gTating term-by-term gives the second of equa-
tions (59) :

where

v=_-_ 0-- "5-',0,_ sin " 0
X. m = I

0m=-- 4(--q)" if _r>O
(1+ ¢'_) m

4qm if _0
Om=--(1-b-qVn) m

} (E22)

:By equation (El4), q contains only odd powers of

e0, so that again the usual sign reversal is nullified

by the factor (--1)", and the final expressions for

0,_ are independent of the sign of cr. The first four
coefficients are:

,,,x 4,._/1667_155,¢_ *\2-6_±5_-) ^' .]O, =_Tg [__ _,ĉ _t__ l_ _ g ..t_____ .) X2 , ["2112 7_15 5_n \. a "_

02=2_ 4 E2 -} 8,_ +(-_ 0-+ 12_:r/)X nt-(l_+_ + 13_2e)X'...]

29
o-a-_L,%V [-1_1_4_@(f2+9}_) x .. .]

1+ 85_+ 16_n _ X4 . . .
0t_ 5308416

(E23)

The inversion of equation (65) to obtain v ex-

plicitly as a function of ,p is accomplished as fol-
lows. Assume an expansion of the form

¢o

v=O+Y2, v,, sin mO (E24)
"m=l

where

Then, by the usual formula of Fourier analysis,

v,_=- | (v--O) sin mOdO
"n"d _=

Integrating by parts gives

'L---- cos mOdv
_m_ D'/Tr

Hence, from equation (65)

•v_------m_, cos m v+ ¢'_--sin jv &'

Expanding the cos into a Taylor's series centered

at my, ,rod carrying out the necessary multiplica-
tions of Fourier series, gives, to the fourth order
in J,

1 1
v,=--O,--:_ 0_0_+_ O,s • • •

0 102 _ 1
va=-- 2+-_ _ --O_Oa+01 0.--_ O_4 • • •

0 30lOa3Va_----- 3-3L_ tgl a, • •

_25)

1

wh or e

Since the equation of the orbit involves cos r,
it is desirqble to have a series expansion for this

quantity. From equation (E24),

Ii
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)cos v=eos 0 cos v,. sin m_ --sin 0 sin sin mO

Expanding in Maelaurin's series and again carrying out the multiplications of the Fourier aeries gives

co

cos v=_Z C,_ cos m _-_" (E26)
m-0 _Ps

where, to the fourth order in J,

(E27)

The final series is the generalization of Kcpler's

equation (eq. (72)). The problem is to evaluate

the integrals

_,---f° e°s2J(¢#2) de(l+e cos _b)_ "

sin23(_b/2) d_b_-fo ° (fT;_)_

To do this introduce the additional pair of inte_als

' e°s2J (¢/2) d¢'o_--- 1+_ cos

f0 sin 2J (_b/2) d¢
7j--- l+e cos _b

By direct integration,

o/o_'y0:

E--¢ sin E

Now consider

'_ cos_ (_/2) cos_ (¢/2)a_+_= d_
o 1+_ cos

lff cos _ (_b/2) (l+eos _b) d_b=2 l+e cos _b

=21ff e°s'_ (_b/2) (1-4-e°s ¢+1-1)l-f-ecos _ d_b

cos_]=12 (_P/2)d¢,-t-@ a,

The same meflmd gives the analogous recurrence
relations

1 _--1
fl'_+_=2-_ a_+ 2---_ #J

7_+_=--_j,_ s in_ (_k/2)d_b+ "r_

_+_=__1 , _+17# t --_--__#
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Thus, the successive coefficients, 3L, in Kepler's

equation can be computed recursively. The first

few are (upper sign to be used if z>0, lower sign
if _< 0) :

M'o=E- e sin E

?[r/" 1Te
ml----_ (E4-sin E)

_IF_=3 (1--d)3_2v--(1Te)2[(1 :k2e)E+e sin El
32e 2

T 5 1

*'_ a=_ {(1--e2)3/2[(3eT2) _=i=e sin v]+(l=t=e)3[(3e=t=2) E_e sin El}

35 {(1--d)3/2[(26e2T32E+ 12r) + Se(-l-2e-- 1) _in v-l- e2 sin 2v]--4(1 _ e)t[(3 &4e)E-t-e sin El}
"1 [4-- 81_72_4

(E2S)
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